Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 96(3): e11009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444297

RESUMO

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are an emerging issue in wastewater treatment. High-temperature thermal processes, incineration being time-tested, offer the opportunity to destroy and change the composition of PFAS. The fate of PFAS has been documented through wastewater sludge incinerators, including a multiple hearth furnace (MHF) and a fluidized bed furnace (FBF). The dewatered wastewater sludge feedstock averaged 247- and 1280-µmol targeted PFAS per sample run in MHF and FBF feed, respectively. Stack emissions (reportable for all targeted PFAS from MHF only) averaged 5% of that value with shorter alkyl chain compounds comprising the majority of the targeted PFAS. Wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust with an average of 0.740- and 0.114-mol F- per sample run, for the MHF and FBF, respectively. Simple alkane PFAS measured at the stack represented 0.5%-4.5% of the total estimated facility greenhouse gas emissions. PRACTITIONER POINTS: The MHF emitted six short chain PFAS from the stack, which were shorter alkyl chain compounds compared with sludge PFAS. The FBF did not consistently emit reportable PFAS from the stack, but contamination complicated the assessment. Five percent of the MHF sludge molar PFAS load was reported in the stack. MHF and FBF wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust. Ultra-short volatile alkane PFAS measured at the stack represented 0.5%-4.5% of the estimated facility greenhouse gas emissions.


Assuntos
Fluorocarbonos , Gases de Efeito Estufa , Esgotos , Águas Residuárias , Alcanos , Incineração , Água
2.
Langmuir ; 37(47): 13846-13858, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787431

RESUMO

The interplay of fluorination and structure of alkane self-assembled monolayers and how these affect hydrophobicity are explored via molecular dynamics simulations, contact angle goniometry, and surface-enhanced infrared absorption spectroscopy. Wetting coefficients are found to grow linearly in the monolayer density for both alkane and perfluoroalkane monolayers. The larger contact angles of monolayers of perfluorinated alkanes are shown to be primarily caused by their larger molecular volume, which leads to a larger nearest-neighbor grafting distance and smaller tilt angle. Increasing the Lennard-Jones force cutoff in simulations is found to increase hydrophilicity. Specifically, wetting coefficients scale like the inverse square of the cutoff, and when extrapolated to the infinite cutoff limit, they yield contact angles that compare favorably to experimental values. Nanoscale roughness is also found to reliably increase monolayer hydrophobicity, mostly via the reduction of the entropic part of the work of adhesion. Analysis of depletion lengths shows that droplets on nanorough surfaces partially penetrate the surface, intermediate between Wenzel and Cassie-Baxter states.

3.
J Phys Chem A ; 124(27): 5599-5605, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32525677

RESUMO

Absorption spectra of liquid water at 300 K are calculated from both classical and density functional theory molecular dynamics simulation data, which together span from 1 MHz to hundreds of THz, agreeing well with experimental data qualitatively and quantitatively over the entire range, including the IR modes, the microwave peak, and the intermediate THz bands. The spectra are decomposed into single-molecular and collective components, as well as into components due to molecular reorientations and changes in induced molecular dipole moments. These decompositions shed light on the motions underlying the librational and translational (hydrogen-bond stretching) bands at 20 and 5 THz, respectively; interactions between donor protons and acceptor lone pair electrons are shown to be important for the line shape in both librational and translational regimes, and in- and out-of-phase librational dimer modes are observed and explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...